
ISSN 2075-0781. Science-Based Technologies, 2013. № 2 (18) 

 

123 

 

 

 

 

 

OPERATION  OF  AIR  TRANSPORT  

 

 

 

UDC 534.3 
 

DOMINANT CONTRIBUTION OF DIPOLES 

IN THE TURBULENCE-GENERATED NOISE 

IN A RIGID PIPE 

A. Borisyuk, D. Phys.-Math. Sc.  

National Aviation University  

aobor@ukr.net 
 

A particular case of the theory of noise generation by a limited region of turbulence in an infinite straight rigid 

pipe of a circular cross-section, which has been developed in work [6], is considered. In this case, the situation 

is studied in which the generated acoustic field is dominated by the contribution made by surface dipoles. Those 

flows and shapes of the pipe local narrowings are of concern, which result in occupation of a turbulent flow 

region by uniformly-distributed large or small eddies. For these cases the corresponding simplified expressions 

for the generated acoustic power are obtained, and their estimates are carried out for the characteristic scales 

in the turbulent flow region. 
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Розглянуто частинний випадок розробленої в праці [6] теорії генерації шуму обмеженою областю 

турбулентності в нескінченній прямій жорсткостінній трубі кругового поперечного перерізу. 

Досліджено ситуацію, коли у згенерованому акустичному полі домінує внесок поверхневих диполів. При 

цьому інтерес становлять такі потоки і форми локальних звужень труб, при яких регіон турбулізованої 

звуженням течії займають рівномірно розподілені великі або малі вихори. Для цих випадків одержано 

відповідні спрощені вирази для згенерованої акустичної енергії і проведено їх оцінки для характерних 

масштабів в області турбулентності. 

Ключові слова: шум, турбулентність, труба, диполі. 

Introduction 
 

Study of flows in pipes is an actual problem in 

car- and aircraft-building industry, gas- and oil-

industry, architecture, municipal economy, medici-

ne, etc. Here a significant interest is related to flow 

turbulization and the acoustic effects appearance due 

to local pipe narrowings, such as wall deposits, 

welding joints, stenosis, etc. It is explained by the 

fact that the generated acoustic field holds 

information about the pipe and flow parameters in 

the noise-producing region, and, hence, there is the 

principal possibility of developing non-invasive 

acoustic diagnostic techniques capable of finding 

such region and finally the irregularity from an 

analysis of the indicated field [1–5]. 

The non-invasive acoustic diagnostic techniques 

can be developed under the availability of theories 

describing adequately the fluid rheology and 

dynamics, as well as the flow acoustics near the 

narrowing, and, hence, relating quantitatively the 

generated acoustic field characteristics to the 

narrowing, pipe and flow parameters. 

In reference [6], a theory of noise generation by a 

limited region of turbulence in an infinite straight 

rigid-walled pipe of circular cross-section has been 

developed, and the corresponding quantitative 

relationships between the generated noise field 

characteristics and the pipe and flow parameters 

have been obtained.  

A turbulence region was modeled by the 

distributed quadrupole and dipole noise sources 

(whose characteristics were assumed to be known), 

and the cases of uniform and non-uniform source 

distribution (i. e., homogeneous and non-homo-

geneous turbulence) were considered. In the next 

work [7] the case of dominant contribution of 

quadrupoles in the turbulence-generated noise in a 

pipe has been investigated, and the corresponding 

simplified expressions for the noise characteristics 

have been established. 
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In this paper another particular case of that theory 

is considered. Here a situation is studied when the 

above-noted noise field is dominated by the 

contribution made by surface dipoles. Those flows 

and shapes of the pipe local narrowing’s are of 

interest, that result in large or small eddies 

distributed uniformly in the turbulence region 

immediately behind the narrowing. 

The paper consists of two sections, conclusions 

and a list of references. In its first section, a problem 

is formulated, the appropriate equations and 

boundary conditions are written, as well as a general 

solution to the problem, which has been obtained in 

work [6], is presented and briefly analyzed. In the 

second section, the above-noted particular case of 

the solution is considered, and the corresponding 

estimates of the acoustic power are carried out. 

Finally, the conclusions of the investigation are 

formulated, and a list of references used in this paper 

is given. 

1. Formulation of the problem  

and its general solution 
 

Before proceeding to the above-noted particular 

case of the theory of noise generation by a compact 

region of turbulence in a pipe, which has been 

developed in reference [6], let us remind the 

physical and corresponding mathematical 

formulation of the problem, as well as present and 

briefly analyze its general solution. So, an infinite 

straight immovable rigid-walled pipe of circular 

cross-section of radius a  is considered. In this pipe, 

a fluid, of mass density , sound speed 0c  and 

kinematic viscosity , flows with the mean axial 

velocity U . The flow is characterized by the small 

Mach number, 1/ 0cUM . A finite fluid 

volume, 0V , is in the turbulent state, and produces 

noise in the pipe. It is necessary to find this noise 

field and establish the quantitative relationships 

between its characteristics and the pipe and flow 

parameters. 

The noise field of interest is governed by the 

Lighthill’s equation, in which the right part contains 

both quadrupole, jiij yyT /
2

, and dipole, ii yF / , 

sources due to the pipe wall [6–8], viz. 
22

2 2
02

ija i
a

i j i

T F
c

y y yt
,           (1) 

ar0 ,   0 2 ,   z . 

The boundary conditions are that the radial 

component of the acoustic velocity vanishes on the 

pipe wall, viz. 

 0
ar

a

r

p
                             (2) 

and that all acoustic waves are outgoing at infinity 

(i. e., there is no sound reflection at the pipe ends). 

In relationships (1) and (2), a  and ap  are the 

acoustic density and pressure fluctuations, 

respectively, which are related as [6–8] 

2
0a ap c ; 

ij i jT u u  and ( )i j ij ijF n p  the Lighthill’s 

stresses and the i -th force component acting on the 

pipe wall ( ijT  and iF  vanish outside the volume 0V  

and the restricting surface 0S , respectively); 

(2 /3) 2ij kk ij ij  the viscous stresses; 

(1/ 2)( / / )ij i j j iu y u y  the strain rates; jn  

the j -th component of the outward normal to the 

pipe wall; iu  the i -th component of the fluid 

velocity; p  and  the fluid pressure and 

dynamic viscosity; , ,r z  the cylindrical 

coordinates; 321 ,, yyy  the other their notations; and 

ij  the Kronecker delta. In addition, hereinafter the 

summation on repeated indices is assumed. 

The boundary problem (1), (2) is solved by the 

Green’s function technique [6, 8, 9], with 

subsequent application of the normal mode method. 

After performing the required mathematical 

operations, a general expression for the acoustic 

power P( )  generated at the frequency  by the 

quadrupole and dipole sources, distributed non-

uniformly in the volume 0V  and on the surrounding 

surface 0S , respectively, has the following form [6] 

2
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0
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0

( )
0 02

( )
0

1
P ( ) 2Re d ( )

4

q TF
nm

q V
nm nm

V
k

r  

0

3 /
0 0 ( )

0 0/

S ( , , )
( , )

TF
ijk a q

nm
S i j k

r
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/
0 0 0sign( )i ( )( ) / /

0 0 0( , )e d ( )nmz z k z zq
nm aa S r .  (3) 

Here ( , , )r zr  is the field-point vector; 

0 0 0 0 0( , , )r z Vr  and / / / /
0 0 0 0 0( , , )r z Vr  the 

position vectors of quadrupoles in the region 0V ; 

3
1)( iiyy  and / / 3

1( )i iyy  the other notations of 0r  

and /
0r , respectively; 

0
0 0 0 0 0( , , )a r a

a z Sr r  

and 
/
0

/ / / /
0 0 0 0 0( , , )a

r a
a z Sr r  the position vectors 

of dipoles on the surface 0S ; 
0 0 0 0 0 0d ( )V r dr d dzr  

and 
0 0 0 0d ( )aS ad dzr  the volume and area 

elements, respectively; 

(1)
J ( )cos( )nm n nmr n , 

(2)
J ( )sin( )nm n nmr n  

the pipe acoustic modes whose squared norms, 
2

( )q
nm , are written as 

2 2
0 0

2
(1)

2 2
2

2 2

J ( ), 0,

J ( ) 1 , 1,
2

m

nm

n nm

nm

a a n

a n
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2
(2)

2
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0, 0,

, 1,

nm

nm

n

n

 

nJ  cylindrical Bessel functions of n -th order; 

/nm nm a  the radial wavenumbers; 
nm

 the 

tabular roots of equation 
/

J ( ) 0n nm , ,...2,1m ; 

2 2
0nm nmk k  the axial wavenumbers; 0 0/k c  

the acoustic wavenumber; and 

0

0

0

1,
sign( )

1,

z z
z z

z z
 

the sign-function.  

In addition, in relationship (3) 
T
ijklS  and F

ikS  are 

the cross-spectra of the Fourier images of, 

respectively, the Lighthill’s stresses ijT , viz. 

/ / * / /
0 0 0 0S ( , , ) ( ) ( , ) ( , )

T
ijkl ij klT Tr r r r , 

and the forces kF , viz. 

/ / * / /
0 0 0 0S ( , , ) ( ) ( , ) ( , )

F
ik a a i a k aF Fr r r r  

TF
ijkS  is the cross-spectrum of the Fourier images of 

the stresses ijT  and the forces kF , viz. 

/ / * / /
0 0 0 0S ( , , ) ( ) ( , ) ( , )

TF
ijk a ij k aT Fr r r r  

(...)  the Dirac delta-function, Re(...)  denotes a real 

part of the complex quantity indicated in the 

parenthesis, and the location of frequency  relative 

to the pipe cut-off frequencies 

0nm nmc                              (4) 

specifies (via the wavenumbers nmk  in the exponent 

))(i)(sign(exp 0
/
00 zzkzz nm  the cases of 

propagating (homogeneous), viz. 

nm
 

and non-propagating (evanescent), viz. 

0 nm
 

waves. 

When the quadrupole and dipole noise sources 

are distributed uniformly in their domains, formula 

(3) is simplified due to simplification of expressions 

for the spectra 
T
ijklS , F

ikS  and 
TF
ijkS , which, in that 

case, become the functions of the source separation 

distance and the frequency only, viz. 

/
0 0S ( , , ) S ( , )

T T
ijkl ijklr r ,    /

0 0r r ; 

/
0 0S ( , , ) S ( , )

F F
ik a a ik aar r ,  

/
0 0aa a ar r ;  (5) 

/
0 0S ( , , ) S ( , )

TF TF
ijk a ijk ar r ,   

/
0 0a ar r . 

The analysis of expression (3) shows that the 

acoustic power P  is a sum of powers )(
P

q
nm  of the 

pipe acoustic modes, ( )q
nm , the individual mode 

power, ( )
P

q
nm , consisting of the three parts. The first 

part, Tq
nm

)(
P , is the acoustic power generated by the 

quadrupoles 
2

/ij i jT y y  in the mode ( )q
nm , the 

second one, Fq
nm

)(
P , results from the dipoles /i iF y , 

and the third one, TFq
nm

)(
P , is due to interaction of the 

quadrupoles and dipoles in the same duct mode. 

Further analysis of formula (3) shows that the 

relative contribution of each part to the mode power 
)(

P
q

nm  (and, hence, to the acoustic power P ) is 

different for the different Mach number values. In 

fact, when the Mach number M  is such that the 

noise field is dominated by the contribution from 

volume quadrupoles, only the first part, Tq
nm

)(
P , 
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remains in the expression for )(
P

q
nm , and then 

relationship (3) takes the following form 

0

2

0 02
( )1 0 1

0

1
P( ) d ( )

4 qq n m V
nm nm

V
k

r  

0

4 /
0 0 ( )

0 0/ /

S ( , , )
( , )

T
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nm
V i j k l

r
y y y y

r r
 

/
0 0 0sign( )i ( )( ) / / /

0 0 0 0( , )e d ( )nmz z k z zq
nm r V r .     (6) 

When the Mach number falls in a range where 

surface dipoles dominate, the second part, Fq
nm

)(
P , do-

minates in )(
P

q
nm , and one has instead of expression (6) 

0
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nm
S i k

a
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/
0 0 0sign( )i ( )( ) / /

0 0 0( , )e d ( )nmz z k z zq
nm aa S r .    (7) 

2. Dominant contribution of dipoles 

Let us consider the situation when the acoustic 

field in a pipe is dominated by the contribution of 

surface dipoles. The dipoles are assumed to be 

distributed uniformly over the surface 0S  

surrounding the turbulence region 0V . The first of 

these conditions can be realized in practice when the 

Reynolds number Re  in the turbulent flow region 

0V  behind a local pipe narrowing is either close to 

the critical value crRe  (i.e., Re crRe ) or slightly  

higher than crRe  (i.e., crReRe , 1M ). The 

second condition (as in the case of uniform 

distribution of quadrupoles [7]) can be ensured when 

 the basic flow upstream of the local pipe 

narrowing is characterized by axial 

symmetry and has a parabolic velocity 

profile; 

 the pipe narrowing has an axisymmetric and 

smooth geometry. 

Under these conditions, relationship (3) is 

reduced to formula (7), which, due to simplification 

of expressions for the functions F
ikS  (see formulas 

(5)), is simplified to the form 

0

0

2 2 22

0 02
( )1 0 1 0

0
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P( ) b ( )d

4

e

i

z
n nm

q
qq n m z

nm nm

a a
n
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0 0 0

0 0 0

22

0 0

S ( , , )
d b ( ( ))

e

i

Fz z
ik z

q
z z i k

z n  

0sign( )i
d dnm zz z k

ze                     (8) 

(here 
1 0 0b ( ) cos( )n n , 

2 0 0b ( ) sin( )n n , 

S / 0
F
ik r ). 

The double integral over  and z  in 

relationship (8) depends on 0  and 0z . Therefore, it 

is evident that in general the expression for the 

spectrum P  cannot be simplified significantly. 

However, such simplification becomes possible 

when the turbulence region 0V  is occupied primarily 

by large-scale or small-scale vortex structures (the 

situations, when it is possible in practice, are 

described in [7]).  

Let us consider these cases. 
 

2.1. Large eddies 
 

Let us consider the case when the region 0V  is 

occupied primarilly by so large vortex structures that 

surface dipoles are completely correlated around the 

circle ar0 .  

In such a situation, the cross-spectra F
ikS  will not 

depend on the azimuthal coordinate , viz. 

S
0

F
ik ,          S S ( , )

F F
ik ik z , 

and relationship (8) is reduced to the following 

expression 

2
0

2
1 0 0

S ( , )
P( )

2

F
zz z

m m z

S

ak
 

0 0sign( )i
dm zz z k

ze ,                      (9) 

where 0S  is the area of the surface 0S .  

One can see that only the axial dipoles 0/ zFz  

contribute to the acoustic field in the pipe when the 

region 0V  is occupied primarily by large eddies. The 

main part of that contribution is made by the first 

acoustic mode of the pipe, (1)
01 1.  

It is corresponded to by a plane acoustic wave 

propagating in the axial direction at the speed 0c . 

The total acoustic power, 

( )d , 

generated by the axial dipoles 0/ zFz  has the 

following form (here only the contribution of the 

mode (1)
01  has been allowed for) 

0

0 0

( , )d
2

F
zz z z

S

a c
,             (10) 

where K ( , )
F
zz z  is the correlation of the forces zF , 

viz. 

i
K ( , ) S ( , )e d

F F
zz z zz z , 
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and 
0/z c  the time needed for the acoustic wave 

to pass the axial distance z  between the dipole 

sources. 

Introducing in the domain 0V  the length scale, 

viz. 

tL a                          (11) 

and the frequency scale, viz. 

t

U
f

a
                          (12) 

(where  and  are the respective scale 

coefficients), as well as the ratio of the characteristic 

turbulent flow velocity, tu , to the undisturbed basic 

flow velocity, U , viz. 

t
t

u

U
                             (13) 

allows one to obtain an estimate for the energy (10), 

viz 

Π
0 3 3 4

0
2

t

S
U M ,  1 .            (14) 

One has the classical cubic dependence of the 

intensity of acoustic radiation of dipoles on the 

Mach number [8, 10]. 

2.2. Small eddies 
 

Now let the turbulence region 0V  be occupied 

primarilly by vortex structures being small 

compared to the pipe radius, a . In such a situation, 

the correlation lengths in the radial, r , azimuthal, 

, and axial, z , directions, as well as the length 

scale tL  in the region 0V  will be small compared to 

a , viz. 

r z tL a a , 1 . 

Then the integration ranges over  and z  in 

formula (8) can be extended from  to , viz. 

0

0

2 2 22

0 0 02
( )1 0 1 0

0

J ( )
P( ) b ( )d d

4

e

i

z
n nm

q
qq n m z

nm nm
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n z

k

2

0

S ( , , )
b ( ( ))

F
ik z

q

i k

n  

0sign( )i
d dnm zz z k

ze .               (15) 

Let us consider the cases of low and high 

frequencies in the obtained relationship. 
 

2.2.1. Low frequencies 
 

The low frequencies are assumed to be those 

satisfying the condition 

0 nm ,    )1,0(),( mn . 

Under this condition the contribution to the noise 

field in the pipe will only be made by its first 

acoustic mode, (1)
01 , and relationship (15) becomes 

as follows 

2

(1) 0
01

0 0

S ( , , )
P( ) P ( )

4

F
ik z

i k

S

ak
 

0 0sign( )i
d dzz z k

ze .                (16) 

An analysis of this expression shows that all the 

dipoles contribute to the low-frequency domain of 

the spectrum P  when the turbulence region 0V  is 

occupied primarily with small eddies. Herewith the 

generated acoustic power propagates in the axial 

direction in the form of a plane wave at a speed 0c . 

Application of the integral-mean-theorem [7], 

viz. 

0 0

2

sign( )iS ( , , )
d dz

F
ik z z z k

z

i k

e  

0 0

2
* sign( )i2 S ( , , )

dz

F
ik z z z k

z

i k

e
a

 

(where *  is the point of the segment 0, , and 

tL ) to relationship (16), viz. 

*

2

0

0 0

S ( , , )
P( )

2

F
ik z

i k

S

ak
 

0 0sign( )i
dzz z k

ze ,   1  

allows making its comparative analysis with 

expression (9). One can see that the acoustic power 

generated by the dipoles at low frequencies in the 

case of occupying the region 0V  primarily with 

small eddies is a small value of the order /  

( 1 ) compared to the acoustic power produced 

by the dipoles in the same frequency range when the 

domain 0V  is occupied primarily with large eddies. 

Accordingly, an expression for the total acoustic 

power, Р, will only differ from expression (10) 

practically by the additional factor / , and the 

estimate for Р will actually have the form (14) 

multiplied by / , viz. 

Π
0 3 3 2 4

0
2

t

S
U M ,   1 .            (17) 

One has again the classical cubic dependence of 

the acoustic power generated by dipoles on the 

Mach number. 
 

2.2.2. High frequencies 
 

Let us proceed to the frequencies higher than all 

the pipe cut-off frequencies, viz. 

nm ,   0n , 1m . 

In this case all the acoustic modes ( )q
nm  will be 

propagating and take part in forming the acoustic 
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far-field in the pipe. Consequently, they must be 

taken into account when making further analysis of 

relationship (15). 

Rewriting the cosine and the sine of the sum of 

two arguments in that relationship and taking 

account of the orthogonality properties of the 

resultant trigonometric functions yields the 

following expression for the spectrum 

2

0

0 1 0

S ( , , )
P( )

4

F
ik z

n m n nm i k

S

a k
 

0sign( )i
cos( ) d dnm zz z k

zn e ,          (18) 

where 

2

1, 0

1
1 , 1

2

n

nm

n

n
n

a

. 

An analysis of formula (18) shows that all the 

dipoles contribute to the high-frequency domain of 

the spectrum Р when the turbulence region 0V  is 

occupied primarily by small eddies. In this case all 

the pipe acoustic modes take part in forming the 

acoustic filed in the pipe. 

Substituting relationship (18) into the integral for 

the total acoustic power Р, viz. 

Π P( )d , 

and introducing the turbulence scales (11)–(13) into 

the resultant expression allows one to obtain the 

estimate for Р, viz. 

Π
0 3 3 3 4

0
2

t

S
U M ,   1 .            (19) 

One can see that in the case of small eddies and 

high frequencies the acoustic power generated by 

dipoles is also determined by the third power of the 

Mach number. However, it is a small value of the 

order  ( 1 ) compared to the power produced 

by dipoles in the case of small eddies and low 

frequencies, which has been described in subsection 

2.2.1 (compare estimates (19) and (17)). 
 

Conclusion 
 

In this paper, a particular case of the theory of 

noise generation by a limited region of turbulence in 

an infinite straight immovable rigid-walled pipe of 

circular cross-section, which has been developed in 

reference [6], has been considered.  

In that case the situation is studied when the 

generated noise field is dominated by the 

contribution made by surface dipoles. Those flows 

and shapes of the local pipe narrowing have been of 

interest, that result in large or small eddies 

distributed uniformly in the turbulence region 

behind the narrowing.  

The corresponding simplified expressions for the 

generated acoustic power have been obtained in the 

considered cases, and their estimates have been 

carried out for the characteristic scales in the 

turbulence region. 
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